Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.476
Filtrar
1.
J Photochem Photobiol B ; 254: 112904, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579534

RESUMO

The fluorescence lifetime of a porphyrinic photosensitizer (PS) is an important parameter to assess the aggregation state of the PS even in complex biological environments. Aggregation-induced quenching of the PS can significantly reduce the yield of singlet oxygen generation and thus its efficiency as a medical drug in photodynamic therapy (PDT) of diseased tissues. Hydrophobicity and the tendency to form aggregates pose challenges on the development of efficient PSs and often require carrier systems. A systematic study was performed to probe the impact of PS structure and encapsulation into polymeric carriers on the fluorescence lifetime in solution and in the intracellular environment. Five different porphyrinic PSs including chlorin e6 (Ce6) derivatives and tetrakis(m-hydroxyphenyl)-porphyrin and -chlorin were studied in free form and combined with polyvinylpyrrolidone (PVP) or micelles composed of triblock-copolymers or Cremophor. Following incubation of HeLa cells with these systems, fluorescence lifetime imaging combined with phasor analysis and image segmentation was applied to study the lifetime distribution in the intracellular surrounding. The data suggest that for free PSs, the structure-dependent cell uptake pathways determine their state and emission lifetimes. PS localization in the plasma membrane yielded mostly monomers with long fluorescence lifetimes whereas the endocytic pathway with subsequent lysosomal deposition adds a short-lived component for hydrophilic anionic PSs. Prolonged incubation times led to increasing contributions from short-lived components that derive from aggregates mainly localized in the cytoplasm. Encapsulation of PSs into polymeric carriers led to monomerization and mostly fluorescence emission decays with long fluorescence lifetimes in solution. However, the efficiency depended on the binding strength that was most pronounced for PVP. In the cellular environment, PVP was able to maintain monomeric long-lived species over prolonged incubation times. This was most pronounced for Ce6 derivatives with a logP value around 4.5. Micellar encapsulation led to faster release of the PSs resulting in multiple components with long and short fluorescence lifetimes. The hydrophilic hardly aggregating PS exhibited a mostly stable invariant lifetime distribution over time with both carriers. The presented data are expected to contribute to optimized PDT treatment protocols and improved PS-carrier design for preventing intracellular fluorescence quenching. In conclusion, amphiphilic and concurrent hydrophobic PSs with high membrane affinity as well as strong binding to the carrier have best prospects to maintain their photophysical properties in vivo and serve thus as efficient photodynamic diagnosis and PDT drugs.


Assuntos
Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotossensibilizantes/química , Células HeLa , Polímeros/química , Porfirinas/química , Povidona/química , Micelas , Linhagem Celular Tumoral
2.
Molecules ; 29(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542923

RESUMO

Our research aimed to develop an amorphous solid dispersion (ASD) of myricetin (MYR) with Polyvinylpyrrolidone K30 (PVP30) to enhance its solubility, dissolution rate, antioxidant, and neuroprotective properties. Employing a combination of solvent evaporation and freeze drying, we successfully formed MYR ASDs. XRPD analysis confirmed complete amorphization in 1:8 and 1:9 MYR-PVP weight ratios. DSC thermograms exhibited a single glass transition (Tg), indicating full miscibility. FT-IR results and molecular modeling confirmed hydrogen bonds stabilizing MYR's amorphous state. HPLC analysis indicated the absence of degradation products, ensuring safe MYR delivery systems. Solubility, dissolution rate (pH 1.2 and 6.8), antioxidant (ABTS, DPPH, CUPRAC, and FRAP assays), and in vitro neuroprotective activities (inhibition of cholinesterases: AChE and BChE) were significantly improved compared to the pure compound. Molecular docking studies revealed that MYR had made several hydrogen, hydrophobic, and π-π stacking interactions, which could explain the compound's potency to inhibit AChE and BChE. MYR-PVP 1:9 w/w ASD has the best solubility, antioxidant, and neuroprotective activity. Stability studies confirmed the physical stability of MYR-PVP 1:9 w/w ASD immediately after dissolution and for two months under ambient conditions. Our study showed that the obtained ASDs are promising systems for the delivery of MYR with the potential for use in alleviating the symptoms of neurodegenerative diseases.


Assuntos
Antioxidantes , Flavonoides , Povidona , Espectroscopia de Infravermelho com Transformada de Fourier , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Solubilidade , Povidona/química
3.
Int J Pharm ; 655: 123997, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38484861

RESUMO

The superior flexibility, efficient drug loading, high surface-to-volume ratio, ease of formulation, and cost-controlled production are considered exceptional advantages of nanofibers (NFs) as a smart delivery system. Deflazacort (DEF) is an anti-inflammatory and immunosuppressant agent. It is categorized as a poorly soluble class II drug. In this study, DEF-loaded polymeric nanofibrous using the electrospinning technique mats, Polyvinyl pyrrolidone (PVP) with or without Poloxamer 188 (PX) were used as mat-forming polymers. Microscopical imaging, drug content (%), and in vitro dissolution studies were conducted for all NFs formulae (F1-F7). All NFs improved the DEF dissolution compared to the unprocessed form, with the superiority of the PVP/PX hybrid. The optimized formula (F7) exhibited an average diameter of 655.46 ± 90.4 nm and % drug content of 84.33 ± 5.58. The dissolution parameters of DEF loaded in PVP/PX NFs (F7) reflected a release of 95.3 % ± 3.1 and 102.6 % ± 1.7 after 5 and 60 min, respectively. NFs (F7) was investigated for drug-polymer compatibility using Fourier-Transform Infrared Spectroscopy (FTIR), Powder X-ray diffraction analysis (PXRD), and Differential Scanning Calorimetry (DSC). In vivo anti-inflammatory study employing male Sprague-Dawley rats showed a significant reduction of rat paw edema for F7 (p < 0.05) compared with unprocessed DEF with a normal epidermal and dermal skin structure comparable to the healthy negative control. Immunohistochemical and morphometric data displayed similarities between the immune reaction of F7 and the negative healthy control. The finding of this work emphasized that DEF loaded in PVP/PX NFs could be considered a useful strategy for enhancing the therapeutic performance of DEF.


Assuntos
Nanofibras , Povidona , Pregnenodionas , Masculino , Ratos , Animais , Povidona/química , Polivinil , Poloxâmero , Nanofibras/química , Solubilidade , Ratos Sprague-Dawley , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Anti-Inflamatórios , Varredura Diferencial de Calorimetria
4.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474022

RESUMO

In this study, amorphous solid dispersions (ASDs) of pterostilbene (PTR) with polyvinylpyrrolidone polymers (PVP K30 and VA64) were prepared through milling, affirming the amorphous dispersion of PTR via X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC). Subsequent analysis of DSC thermograms, augmented using mathematical equations such as the Gordon-Taylor and Couchman-Karasz equations, facilitated the determination of predicted values for glass transition (Tg), PTR's miscibility with PVP, and the strength of PTR's interaction with the polymers. Fourier-transform infrared (FTIR) analysis validated interactions maintaining PTR's amorphous state and identified involved functional groups, namely, the 4'-OH and/or -CH groups of PTR and the C=O group of PVP. The study culminated in evaluating the impact of amorphization on water solubility, the release profile in pH 6.8, and in vitro permeability (PAMPA-GIT and BBB methods). In addition, it was determined how improving water solubility affects the increase in antioxidant (ABTS, DPPH, CUPRAC, and FRAP assays) and neuroprotective (inhibition of cholinesterases: AChE and BChE) properties. The apparent solubility of the pure PTR was ~4.0 µg·mL-1 and showed no activity in the considered assays. For obtained ASDs (PTR-PVP30/PTR-PVPVA64, respectively) improvements in apparent solubility (410.8 and 383.2 µg·mL-1), release profile, permeability, antioxidant properties (ABTS: IC50 = 52.37/52.99 µg·mL-1, DPPH: IC50 = 163.43/173.96 µg·mL-1, CUPRAC: IC0.5 = 122.27/129.59 µg·mL-1, FRAP: IC0.5 = 95.69/98.57 µg·mL-1), and neuroprotective effects (AChE: 39.1%/36.2%, BChE: 76.9%/73.2%) were confirmed.


Assuntos
Antioxidantes , Benzotiazóis , Povidona , Ácidos Sulfônicos , Resveratrol , Povidona/química , Polímeros/química , Solubilidade , Difração de Raios X , Água , Varredura Diferencial de Calorimetria , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Int J Pharm ; 654: 123972, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38458404

RESUMO

A core-sheath structure is one of the methods developed to overcome the challenges often faced when using monolithic fibers for drug delivery. In this study, fibers based on polyvinylpyrrolidone (core) and ethyl cellulose (sheath) were successfully produced using a novel core-sheath pressure-spinning process. For comparison, these two polymers were also processed into as blend fibers. All samples were then investigated for their performances in releasing water-soluble ampicillin (AMP) and poorly water-soluble ibuprofen (IBU) model drugs. Scanning electron,digital and confocal microscopy confirmed that fibers with a core-sheath structure were successfully made. Fourier transform infrared spectroscopy showed the success of the pressure-spinning technique in encapsulating AMP/IBU in all fiber samples. Compared to blend fibers, the core-sheath fibers had better performance in encapsulating both water-soluble and poorly water-soluble drugs. Moreover, the core-sheath structure was able to reduce the initial burst release and provided a better sustained release profile than the blend fiber analog. In conclusion, the pressure-spinning method was capable of producing core-sheath and blend fibers that could be used for the loading of either hydrophilic or hydrophobic drugs for controlled drug delivery systems.


Assuntos
Celulose/análogos & derivados , Nanofibras , Povidona , Povidona/química , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas , Água , Nanofibras/química
6.
Pharm Dev Technol ; 29(3): 258-264, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407128

RESUMO

The aim of this study was to evaluate the suitability of a non-disruptive Raman spectroscopic method to quantify drug concentrations below 5 w% within a polymer matrix produced by hot-melt extrusion (HME). For calibration, praziquantel (PZQ)-polyvinylpyrrolidone-vinylacetat-copolymer (PVP-VA) mixtures were extruded. By focusing the laser light of the Raman probe to a diameter of 1 mm and implementing a self-constructed filament holder, the signal-to-noise (S/N) ratio could be reduced considerably. The obtained Raman spectra show quite high fluorescence, which is likely to be caused by dissolved pharmaceutical active ingredient (API) in the polymer matrix. For content determination, HPLC analysis was conducted as a reference method using the same filament segments. A partial least squares (PLS) model, regressing the PZQ concentrations from HPLC method analysis versus the off-line collected Raman spectra, was developed. The linear correlation for a suitable extrusion run for the production of low-dosed filaments (extrusion 1, two kneading zones) is acceptable (R2 = 0.9915) while the correlation for a extrusion set-up with low miscibility (extrusion 2; without kneading zone) is unacceptable (R2 = 0.5349). The predictive performance of the calibration model from extrusion 1 is rated by the root mean square error of estimation (RMSEE), which was 0.08%. This calibration can now be used to validate the content of low-dosed filaments during HME.


Assuntos
Povidona , Análise Espectral Raman , Análise Espectral Raman/métodos , Povidona/química , Polímeros/química , Tecnologia de Extrusão por Fusão a Quente , Composição de Medicamentos/métodos , Temperatura Alta
7.
Molecules ; 29(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38338458

RESUMO

Porous materials are widely used as an effective strategy for the solubilization of insoluble drugs. In order to improve the solubility and bioavailability of low water-solubility drugs, it is necessary to prepare porous materials. Mannitol is one of the most popular excipients in food and drug formulations. In this study, porous mannitol was investigated as a drug carrier for low water solubility drugs. Its fabrication, drug loading, and drug release mechanisms were investigated. Porous mannitol was fabricated using the co-spray-antisolvent process and utilizing polyvinylpyrrolidone K30 (PVP K30) as the template agent. Porous mannitol particles were prepared by changing the proportion of the template agent, spraying the particles with mannitol, and eluting with ethanol in order to regulate their pore structure. In subsequent studies, porous mannitol morphology and characteristics were determined systematically. Furthermore, curcumin and ibuprofen, two poorly water-soluble drugs, were loaded into porous mannitol, and their release profiles were analyzed. The results of the study indicated that porous mannitol can be prepared using PVP K30 as a template and that the amount of template agent can be adjusted in order to control the structure of the porous mannitol. When the template agent was added in amounts of 1%, 3%, and 5%, the mannitol pore size increased by 167.80%, 95.16%, and 163.98%, respectively, compared to raw mannitol. Molecular docking revealed that mannitol and drugs are adsorbents and adhere to each other by force interaction. The cumulative dissolution of curcumin and ibuprofen-loaded porous mannitol reached 69% and 70%, respectively. The release mechanism of curcumin and ibuprofen from drug-loaded mannitol was suitable for the Korsmeyer-Peppas kinetic model. In summary, the co-spray-antisolvent method proved effective in fabricating porous materials rapidly, and porous mannitol had a remarkable effect on drug solubilization. The results obtained are conducive to the development of porous materials.


Assuntos
Curcumina , Ibuprofeno , Porosidade , Curcumina/química , Manitol/química , Simulação de Acoplamento Molecular , Solubilidade , Povidona/química , Água/química , Portadores de Fármacos
8.
PLoS One ; 19(2): e0297467, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394326

RESUMO

Glipizide, a poor water-soluble drug belongs to BCS class II. The proposed work aimed to enhance the solubility of glipizide by preparing solid dispersions, using polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG). Solvent evaporation method was used for the preparation of glipizide solid dispersions. Solid dispersions were prepared in four different drug-to-polymer ratios i.e. 1:1, 1:2, 1:3 and 1:4. Mainly effect of three polymers (PVP K30, PVP K90 and PEG 6000) was evaluated on the solubility and dissolution of glipizide. The in-vitro dissolution of all prepared formulations was performed under pH 6.8 at 37°C using USP type II apparatus. In-vitro dissolution results revealed that the formulations having high concentrations of the polymer showed enhanced solubility. Enhancements in the solubility and rate of dissolution of the drug were noted in solid dispersion formulations compared to the physical blends and pure drug. Solid dispersions containing polyvinyl pyrrolidone exhibited a more favorable pattern of drug release compared to the corresponding solid dispersions with PEG. An increase in the maximum solubility of the drug within the solid dispersion systems was observed in all instances. Two solid dispersion formulations were optimized and formulated into immediate-release tablets, which passed all the pharmacopoeial and non-pharmacopoeial tests. Fourier transformed Infrared (FTIR) spectroscopy X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) were used to indicate drug: polymer interactions in solid state. Analysis of the solid dispersion samples through characterization tests indicated the compatibility between the drug and the polymer.


Assuntos
Glipizida , Polivinil , Solubilidade , Polímeros/química , Polietilenoglicóis/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Povidona/química , Difração de Raios X , Varredura Diferencial de Calorimetria
9.
Int J Pharm ; 652: 123846, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38272195

RESUMO

Long-acting crystal suspensions of active pharmaceutical ingredients (API) mostly comprised of an API, a suspension media (water) and excipients and provide sustained API release over time. Excipients are crucial for controlling particle size and to achieve the stability of the API crystals in suspension. A bottom-up process was designed to produce long-acting crystal suspensions whilst investigating the excipient requirements during the production process and the subsequent storage. PVP K30 emerged as the most effective excipient for generating stable naproxen crystals with the desired size of 1 to 15 µm, using ethanol as solvent and water as anti-solvent. Calculations, performed based on the crystal properties and assuming complete PVP K30 adsorption on the crystal surface, revealed lower PVP K30 requirements during storage compared to initial crystal generation. Consequently, a membrane-based diafiltration process was used to determine and fine-tune PVP K30 concentration in the suspension post-crystallization. A seven-stage diafiltration process removed 98 % of the PVP K30 present in the suspension thereby reducing the PVP-to-naproxen ratio from 1:2 to 1:39 without impacting the stability of naproxen crystals in suspension. This work provides insights into the excipient requirements at various production stages and introduce the membrane-based diafiltration for precise excipient control after crystallization.


Assuntos
Química Farmacêutica , Excipientes , Excipientes/química , Naproxeno/química , Povidona/química , Tecnologia , Água/química , Suspensões , Solubilidade
10.
J Tradit Chin Med ; 44(1): 54-62, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38213239

RESUMO

OBJECTIVE: To prepare aloe-emodin solid dispersion (AE-SD) and determine the metabolic process of AE and AE-SD in vivo. METHODS: AE-SD was prepared viasolvent evaporation or solvent melting using PEG-6000 and PVP-K30 as carriers. Thermogravimetric analysis, X-ray diffraction spectroscopy, differential scanning calorimetry, Fourier transform infrared spectroscopy and scanning electron microscopy were used to identify the physical state of AE-SD. Optimal prescriptions were screened viathe dissolution degree determination method. Using Phoenix software, AE suspension and AE-SD were subjected to a pharmacokinetic comparison study analyzing the alteration of behavior in vivo after AE was prepared as a solid dispersion. Acute toxicity was assessed in mice, and the physiological toxicity was used as the determination criterion for toxicity. RESULTS: AE-SD showed that AE existed in the carrier in an amorphous state. Compared with polyethylene glycol, polyvinylpyrrolidone (PVP) inhibited AE crystallization, causing the drug to transform from a dense crystalline state to an amorphous form and increasing the degree of drug dispersion. Therefore, it was more suitable as a carrier material for AE-SD. The addition of poloxamer (POL) was more beneficial to the stability of solid dispersions and could reduce the amount of PVP. The dissolution test confirmed that the optimal ratio of AE to the composite vector AE-PVP-POL was 1:2:2, and its dissolution effect was also optimal. Based on the pharmacokinetic comparison, the drug absorption was faster and quickly reached the peak of blood drug concentration in AE-SD compared to AE, the Cmax of AE-SD was greater than that of AE, and t1/2 and mean residence time of AE-SD were less than AE. The results showed that the drug metabolism in AE-SD was better, and the residence time was shorter. The toxicology study showed that both AE and AE-SD had no toxicity. CONCLUSION: This paper established that the solubility of the drug could be increased after preparing a solid dispersion, as demonstrated by in vitro dissolution experiments. In vivo pharmacokinetics studies confirmed that AE-SD could improve the bioavailability of AE in vivo, providing a new concept for the research and development of AE preparations.


Assuntos
Aloe , Emodina , Camundongos , Animais , Difração de Raios X , Povidona/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Poloxâmero
11.
Mol Pharm ; 21(2): 770-780, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181202

RESUMO

The R3m molecular descriptor (R-GETAWAY third-order autocorrelation index weighted by the atomic mass) has previously been shown to encode molecular attributes that appear to be physically and chemically relevant to grouping diverse active pharmaceutical ingredients (API) according to their potential to form persistent amorphous solid dispersions (ASDs) with polyvinylpyrrolidone-vinyl acetate copolymer (PVPVA). The initial R3m dispersibility model was built by using a single three-dimensional (3D) conformation for each drug molecule. Since molecules in the amorphous state will adopt a distribution of conformations, molecular dynamics simulations were performed to sample conformations that are probable in the amorphous form, which resulted in a distribution of R3m values for each API. Although different conformations displayed R3m values that differed by as much as 0.4, the median of each R3m distribution and the value predicted from the single 3D conformation were very similar for most structures studied. The variability in R3m resulting from the distribution of conformations was incorporated into a logistic regression model for the prediction of ASD formation in PVPVA, which resulted in a refinement of the classification boundary relative to the model that only incorporated a single conformation of each API.


Assuntos
Polímeros , Povidona , Polímeros/química , Povidona/química , Compostos de Vinila/química , Liberação Controlada de Fármacos , Solubilidade , Composição de Medicamentos/métodos
12.
Exp Parasitol ; 256: 108626, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37972848

RESUMO

Among all the neglected diseases, schistosomiasis is considered the second most important parasitic infection after malaria. Praziquantel is the most widely used drug for this disease, but its exclusive use may result in the development of drug-resistant schistosomiasis. To increase the control of the disease, new drugs have been developed as alternative treatments, among them 2-(-5-bromo-1-h-indole-3-yl-methylene)-N-(naphthalene-1-ylhydrazine-carbothiamide (LQIT/LT-50), which showed promising schistosomicidal activity in nonclinical studies. However, LQIT/LT-50 presents low solubility in water, resulting in reduced bioavailability. To overcome this solubility problem, the present study aimed to develop LQIT/LT-50 solid dispersions for the treatment of schistosomiasis. Solid dispersions were prepared through the solvent method using Soluplus©, polyethylene glycol (PEG) or polyvinylpyrrolidone (PVP K-30) as hydrophilic carriers. The formulations with the best results in the compatibility tests, aqueous solubility and preliminary stability studies have undergone solubility tests and physicochemical characterizations by Fourier-transform infrared spectroscopy (FTIR), x-ray diffractometry (XRD), exploratory differential calorimetry (DSC), thermogravimetry (TG) and Raman spectroscopy. Finally, the schistosomicidal activity was evaluated in vitro. The phycochemical analyzes showed that when using PVP K-30, there was an interaction between the PVP K-30 and LQIT/LT-50, proving the successful development of the solid dispersion. Furthermore, an increase in the solubility of the new system was observed (LQIT/LT-50:PVP K-30) in addition to the improvement in the in vitro shistosomidal activity at 1:4 (w/w) molar ratio (i.e., 20% drug loading) when compared to LQIT/LT-50 alone. The development of the LQIT/LT-50:PVP K-30 1:4 solid dispersion is encouraging for the future development of new pharmaceutical solid formulations, aiming the schistosomicidal treatment.


Assuntos
Esquistossomose , Esquistossomicidas , Humanos , Esquistossomicidas/farmacologia , Química Farmacêutica/métodos , Povidona/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Naftalenos , Água , Indóis/farmacologia , Difração de Raios X , Portadores de Fármacos/química
13.
Eur J Pharm Biopharm ; 194: 36-48, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036066

RESUMO

Drug delivery systems based on synthetic and natural polymers offer a new approach with a capacity to control the release of bio-active agents within time. In this work, we present different designs of Polycaprolactone (PCL) 3D scaffolds containing Polyvinylpyrrolidone (PVP) nanoparticles that can store a hydrophilic drug. The drug delivery system, combined of PCL and PVP polymers fabricated by additive manufacturing, aims for a solution for longer and more stabled drug delivery carrier. The drug, planned to be released to the targeted area, is sprayed with the electrospray method inside PVP nanoparticles on the different layers of the fabricated PCL scaffolds 3D printing. This makes obtaining a layered and porous scaffold and drug-loaded nanoparticles within this structure easier. Obtained PCL scaffolds containing Tetracyclines (Tet) loaded PVP nanoparticles showed that drug encapsulation into the interlayer extended the release time and exhibited a controlled release profile for days. Moreover, produced scaffolds have good biocompatibility and no harmful effects. The combination of 3D scaffolds and drug-loaded nanoparticles aims to develop new functional scaffolds by targeting more efficient and longer-lasting drug delivery.


Assuntos
Nanopartículas , Povidona , Povidona/química , Tecidos Suporte/química , Poliésteres/química , Antibacterianos , Polímeros/química , Tetraciclina , Portadores de Fármacos , Impressão Tridimensional , Engenharia Tecidual/métodos
14.
J Pharm Sci ; 113(3): 680-687, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37659719

RESUMO

This study examined the usefulness of 1H T1 relaxation measurements for evaluating the homogeneity of amorphous solid dispersion (ASD). Indomethacin and polyvinylpyrrolidone were used to prepare two kinds of ASDs. One was inhomogeneous ASD (ASDmelt) prepared by a melt-quenching method, and the other was homogeneous ASD (ASDsolvent) prepared by a solvent evaporation method. The T1 relaxation was measured by the time-domain NMR (TD-NMR) technique using a low-field NMR system. Curve-fitting analysis of T1 relaxation plots was conducted using the Akaike information criterion. This fitting analysis revealed that the T1 relaxation of ASDmelt and ASDsolvent was biphasic and monophasic, respectively. ASDmelt and ASDsolvent were inhomogeneous and homogeneous on a nanometer scale, respectively, considering the spin diffusion of 1H nuclei. These T1 results were consistent with the Raman mapping of ASDs. From the fitting analysis of 1H T1 relaxation, we conclude that TD-NMR is a promising technique for evaluating ASD homogeneity.


Assuntos
Indometacina , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Indometacina/química , Povidona/química , Solventes , Solubilidade
15.
Int J Pharm ; 650: 123674, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38061497

RESUMO

Amorphous solid dispersion (ASD) is a well-established strategy for enhancing the solubility and bioavailability of poorly soluble drugs. A significant portion of ASD products are in tablet form. However, the influence of common polymers and drug loading on the manufacturability of ASD tablets remains underexplored. This study focuses on investigating spray-dried ASDs from a tableting perspective by evaluating their physiochemical and mechanical properties. Itraconazole (ITZ) and indomethacin (IND), at the drug loadings ranging from 10% to 50%, were prepared with two polymers, hydroxypropyl methylcellulose acetate succinate (HPMCAS) and polyvinylpyrrolidone (PVP), serving as representative systems. Our findings revealed that increasing the drug loading resulted in a decreased surface area in ITZ-HPMCAS, IND-HPMCAS, and IND-PVP ASDs. However, this trend was not observed in ITZ-PVP dispersions, possibly due to the morphological disparities. Compaction results demonstrated that tabletability improved with decreasing drug loadings, except for ITZ-PVP dispersions. A partial least square analysis underscored particle surface area as the key factor influencing the tensile strength of ASD tablets. Additionally, our study disclosed that ITZ-PVP ASDs exhibited the worst release profiles and stability performance. The comprehensive journey from characterizing ASD particles to analyzing their compaction behavior and investigating drug release and physical stability offered profound insights into the attributes crucial for the downstream processing of amorphous pharmaceuticals.


Assuntos
Itraconazol , Polímeros , Polímeros/química , Solubilidade , Liberação Controlada de Fármacos , Itraconazol/química , Povidona/química , Composição de Medicamentos/métodos
16.
Int J Pharm Compd ; 27(6): 522-527, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38100670

RESUMO

Orally disintegrating tablets, which were originally developed in the pharmaceutical field to improve the compliance of patients who had difficulty swallowing tablets, have become a preferable choice in solid dosage forms since it brings advantages to the patients and consumers in the healthcare system. Among the advantages of this novel dosage form are a faster onset of action, improved bioavailability, and the ease of administration as it can be taken without water. However, there are still some limitations of orally disintegrating tablets that need to be overcome, including a lack of mechanical strength, an unpleasant taste of the drug in the mouth, and a stability issue due to its hygroscopicity nature. This objective of this study was to identify the composition of co-processed excipients comprising of mannitol, microcrystalline cellulose, xylitol, and crospovidone or croscarmellose sodium in order to formulate orally disintegrating tablets containing memantine hydrochloride. This study was carried out in two stages. Firstly, orally disintegrating tablets containing memantine hydrochloride with 6 different formulations, which differed in the percentage of crospovidone or croscarmellose sodium, were formulated and manufactured. Secondly, the orally disintegrating tablets obtained were evaluated through pre- and post-compression tests based on the standard for orally disintegrating tablets. Formulation 3, which consisted of 10% xylitol, 10% mannitol, 72% microcrystalline cellulose, and 8% crospovidone, was chosen as the optimum formulation for the co-processed excipient since it was the fastest disintegration process among all the formulations in the study. In addition, Formulation 3 also showed the acceptable and satisfying results in other evaluation tests such as - weight variation test, hardness test, and friability test. The co-processed excipient comprising of 10% xylitol, 10% mannitol, 72% microcrystalline cellulose, and 8% crospovidone, which is characterized by improved functionalities such as a fast disintegration process, plays a crucial role in the application of orally disintegrating tablets.


Assuntos
Manitol , Povidona , Humanos , Manitol/química , Povidona/química , Xilitol , Memantina , Excipientes/química , Carboximetilcelulose Sódica/química , Comprimidos/química , Solubilidade , Composição de Medicamentos , Administração Oral
17.
AAPS PharmSciTech ; 24(8): 247, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030948

RESUMO

The purpose of this study is to develop modified particles with different structures to improve the flowability and compactibility of Liuwei Dihuang (LWDH) powder using co-spray drying technology, and to investigate the preparation mechanism of modified particles and their modified direct compaction (DC) properties. Moreover, tablets with high drug loading contents were also prepared. Particles were designed using polyvinylpyrrolidone (PVP K30) and hydroxypropyl methylcellulose (HPMC E3) as shell materials, and sodium bicarbonate (NaHCO3) and ammonium bicarbonate (NH4HCO3) as pore-forming agents. The porous particles (Ps), core-shell particles (CPs), and porous core-shell particles (PCPs) were prepared by co-spray drying technology. The key DC properties and texture properties of all the particles were measured and compared. The properties of co-spray drying liquid were also determined and analyzed. According to the results, Ps showed the least improvement in DC properties, followed by CPs, and PCPs showed a significant improvement. The modifier, because of its low surface tension, was wrapped in the outer layer to form a shell, and the pore-forming agent was thermally decomposed to produce pores, forming core-shell, porous, and porous core-shell composite structures. The smooth surface of the shell structure enhances fluidity, while the porous structure allows for greater compaction space, thereby improving DC properties during the compaction process.


Assuntos
Povidona , Secagem por Atomização , Derivados da Hipromelose/química , Povidona/química , Medicina Tradicional , Tamanho da Partícula
18.
AAPS PharmSciTech ; 24(8): 219, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891363

RESUMO

In the current work, screening of polymers viz. polyacrylic acid (PAA), polyvinyl pyrrolidone vinyl acetate (PVP VA), and hydroxypropyl methyl cellulose acetate succinate (HPMC AS) based on drug-polymer interaction and wetting property was done for the production of a stable amorphous solid dispersion (ASD) of a poorly water-soluble drug Riluzole (RLZ). PAA showed maximum interaction and wetting property hence, was selected for further studies. Solid state characterization studies confirmed the formation of ASD with PAA. Saturation solubility, dissolution profile, and in vivo pharmacokinetic data of the ASD formulation were generated in rats against its marketed tablet Rilutor. The RLZ:PAA ASD showed exponential enhancement in the dissolution of RLZ. Predicted and observed pharmacokinetic data in rats showed enhanced area under curve (AUC) and Cmax in plasma and brain with respect to Rilutor. Furthermore, a physiologically based pharmacokinetic (PBPK) model of rats for Rilutor and RLZ ASD was developed and then extrapolated to humans where physiological parameters were changed along with a biochemical parameter. The partition coefficient was kept similar in both species. The model was used to predict different exposure scenarios, and the simulated data was compared with observed data points. The PBPK model simulated Cmax and AUC was within two times the experimental data for plasma and brain. The Cmax and AUC in the brain increased with ASD compared to Rilutor for humans showing its potential in improving its biopharmaceutical performance and hence enhanced therapeutic efficacy. The model can predict the RLZ concentration in multiple compartments including plasma and liver.


Assuntos
Polímeros , Riluzol , Ratos , Humanos , Animais , Polímeros/química , Povidona/química , Solubilidade , Molhabilidade
19.
Pharm Res ; 40(9): 2229-2237, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37552386

RESUMO

OBJECTIVES: Amorphous solid dispersions (ASDs), wherein a drug is molecularly dispersed in a polymer, can improve physical stability and oral bioavailability of poorly soluble drugs. Risk of drug crystallization is usually averted using high polymer concentrations. However, we demonstrated recently that the overlap concentration, C*, of polymer in drug melt is the minimum polymer concentration required to maintain drug in the amorphous state following rapid quench. This conclusion was confirmed for several drugs mixed with poly(vinylpyrrolidone) (PVP). Here we assess the solid-state stability of ASDs formulated with a variety of polymers and drugs and at various polymer concentrations (C) and molecular weights (MWs). We further test the hypothesis that degree of drug crystallization decreases with increasing C/C* and vanishes when C>C*, where C* depends on polymer MW and strength of drug-polymer interaction. METHODS: We test our hypothesis with ASDs consisting of ketoconazole admixed with polyacrylic acid, polymethacrylic acid and poly (methacrylic acid-co-ethyl acrylate); and felodipine admixed with PVP and poly (vinylpyrrolidone-co-vinyl acetate). Values of C* for polymers in molten drug are rheologically determined. Crystallization behavior is assessed by measuring enthalpy of fusion, ΔHf  and by X-ray diffraction. RESULTS: We confirm that ΔHf/ΔHf, C = 0 = f(C/C∗), and essentially no crystallization occurs when C>C*. CONCLUSIONS: Our findings will aid researchers in designing or selecting appropriate polymers to inhibit crystallization of poorly soluble drugs. This research also suggests that C* as determined by rheology can be used to compare drug-polymer interactions for similar molecular weight polymers.


Assuntos
Felodipino , Polímeros , Polímeros/química , Cristalização , Cetoconazol/química , Reologia , Solubilidade , Povidona/química
20.
Drug Deliv ; 30(1): 2241665, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37537858

RESUMO

Canagliflozin (CFZ) is a sodium-glucose cotransporter-2 inhibitor (SGLT2) that lowers albuminuria in type-2 diabetic patients, cardiovascular, kidney, and liver disease. CFZ is classified as class IV in the Biopharmaceutical Classification System (BCS) and is characterized by low permeability, solubility, and bioavailability, most likely attributed to hepatic first-pass metabolism. Nanocrystal-based sublingual formulations were developed in the presence of sodium caprate, as a wetting agent, and as a permeability enhancer. This formulation is suitable for children and adults and could enhance solubility, permeability, and avoid enterohepatic circulation due to absorption through the sublingual mucosa. In the present study, formulations containing various surfactants (P237, P338, PVA, and PVP K30) were prepared by the Sono-homo-assisted precipitation ion technique. The optimized formula prepared with PVP-K30 showed the smallest particle size (157 ± 0.32 nm), Zeta-potential (-18 ± 0.01), and morphology by TEM analysis. The optimized formula was subsequently formulated into a sublingual tablet containing Pharma burst-V® with a shorter disintegration time (51s) for the in-vivo study. The selected sublingual tablet improved histological and biochemical markers (blood glucose, liver, and kidney function), AMP-activated protein kinase (AMPK), and protein kinase B (AKT) pathway compared to the market formula, increased CFZ's antidiabetic potency in diabetic rabbits, boosted bioavailability by five-fold, and produced faster onset of action. These findings suggest successful treatment of diabetes with CFZ nanocrystal-sublingual tablets.


Assuntos
Diabetes Mellitus Tipo 2 , Nanopartículas , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Coelhos , Canagliflozina , Comprimidos/química , Solubilidade , Povidona/química , Permeabilidade , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...